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Abstract. We consider the three n-dimensional nonlinear wave equations

utt =
n∑
k=1

[Fk(u)uxk ]xk utt =
n∑
k=1

Fk(uxk )uxkxk and utt =
n∑
k=1

Fk(uxkxk ).

We also consider a special class of point transformations. Motivated by the results on the
corresponding one-dimensional equations we present a class of discrete symmetries for these
equations. In some cases these discrete symmetries form cyclic groups of finite order. Furthermore,
point transformations exist that relate different equations but of the same class. The equivalence
point transformations for each of the above general equations are presented.

1. Introduction

Transformation properties of one-dimensional nonlinear wave equations have been widely
studied because of the many practical benefits that such knowledge gives and also because of
the variety of physical applications for which these equations are model equations. Probably
the most useful point transformations of partial differential equations (PDEs) are those which
form a continuous (Lie) group of transformations, each member of which leaves an equation
invariant. These may be employed to derive new solutions directly or via similarity reductions.
Ibragimov [1] and Fushchich et al [2] provide two excellent sources of reference of such
transformations of a large number of PDEs as well as for their many and varied physical
applications. The Lie point transformations of the most common classes of one-dimensional
nonlinear wave equations, utt = [F(u)ux]x , utt = F(ux)uxx and utt = F(uxx) have been
investigated in [3], [4] and [5]† respectively.

In addition to possessing continuous groups of symmetries many PDEs also possess
discrete point symmetries, which contribute to the full symmetry group. Such an example
is given by Kingston and Sophocleous [6] who found that the reciprocal point transformation
(double application gives the identity transformation) x ′ = x/t , t ′ = 1/t , u′ = −ut + x leaves
the Burger-type equation ut + uux + (f (t)− f (1/t))uxx = 0 invariant, which is a symmetry
additional to the Lie point symmetries obtained from the classical approach [7]. Furthermore
PDEs admit equivalence transformations. These are transformations which have the property
to transform any member of a class of PDEs to a PDE which is also a member of the class.

The discrete point symmetries for the classes of one-dimensional nonlinear wave equations
utt = [F(u)ux]x , utt = F(ux)uxx and utt = F(uxx) have been classified in [8]. It turns out

† See [2, p 212].
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8320 C Sophocleous

that these discrete symmetries form cyclic groups of finite order. This paper is in the spirit of
this later work. We generalize the results of [8] to the n-dimensional nonlinear wave equations

utt =
n∑
k=1

[Fk(u)uxk ]xk (1.1)

utt =
n∑
k=1

Fk(uxk )uxkxk (1.2)

utt =
n∑
k=1

Fk(uxkxk ). (1.3)

Lie symmetries of equation (1.1) when n = 2 and n = 3 have been studied [1].
In the following section we introduce the restricted classes of point transformations which

are employed to construct the desired results. Furthermore, some preliminary results are
derived for the transformed derivatives of u. Sections 3–5 present the point transformations
obtained for the PDEs (1.1)–(1.3), respectively. In section 3 we give a detailed derivation of
how these results are obtained, while in sections 4 and 5 we only state the results. Finally, in
section 6 we give some final comments.

2. The class of point transformations: basic results

We consider the point transformations of the general class

x ′
i = Pi(x, t, u) t ′ = Q(x, t, u) u′ = R(x, t, u) i = 1, 2, . . . , n (2.1)

where x = (x1, x2, . . . , xn), relating x1, . . . , xn, t, u(x1, . . . , xn, t) and x ′
1, . . . , x

′
n, t

′,
u′(x ′

1, . . . , x
′
n, t

′). We assume that these are non-degenerate in the sense that the Jacobian

J = ∂(P1, P2, . . . , Pn,Q,R)

∂(x1, x2, . . . , xn, t, u)
�= 0 (2.2)

and also that

δ = ∂(P1, P2, . . . , Pn,Q)

∂(x1, x2, . . . , xn, t)
�= 0. (2.3)

In (2.3) Pi and Q are regarded as functions of x1, . . . , xn and t , using the fact that u =
u(x1, . . . , xn, t), whereas in (2.2)Pi,Q andR are regarded as functions of then+2 independent
variables x1, . . . , xn, t and u.

In [9] a detailed derivation for the derivatives of u′ in terms of the derivatives of u, in
the case where u (and u′) depends only on two independent variables, is presented. Here we
generalize these results to the case where u (and u′) depends on n + 1 independent variables
by stating two formulas, for the first and second derivatives, respectively. The first derivatives
of u′, in terms of the derivatives of u, are given by the formula

U1 = M∆−1 (2.4)

where U1,M and ∆ are 1 × (n + 1), 1 × (n + 1) and (n + 1)× (n + 1) matrices, respectively,
defined as follows:

U1 = [u′
x ′

1
, u′
x ′

2
, . . . , u′

x ′
n
, u′
t ′ ] (2.5)

M = [Dx1R,Dx2R, . . . ,DxnR,DtR] (2.6)
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∆ =




Dx1P1 Dx2P1 · · · DxnP1 DtP1

Dx1P2 Dx2P2 · · · DxnP2 DtP2

· · · ·
· · · ·
· · · ·

Dx1Pn Dx2Pn · · · DxnPn DtPn
Dx1Q Dx2Q · · · DxnQ DtQ




(2.7)

whereDk is the total derivative with respect to the indicated variable. We note that the inverse
of the matrix ∆ exists, since its determinant is given by equation (2.3). The second derivatives
can be found from the formula

U2 = N∆−1 (2.8)

where U2 and N are (n + 1)× (n + 1) matrices defined as follows:

U2 =




u′
x ′

1x
′
1
u′
x ′

1x
′
2

· · · u′
x ′

1x
′
n
u′
x ′

1t
′

u′
x ′

2x
′
1
u′
x ′

2x
′
2

· · · u′
x ′

2x
′
n
u′
x ′

2t
′

· · · ·
· · · ·
· · · ·

u′
x ′
nx

′
1
u′
x ′
nx

′
2

· · · u′
x ′
nx

′
n
u′
x ′
nt

′

u′
t ′x ′

1
u′
t ′x ′

2
· · · u′

t ′x ′
n

u′
t ′t ′




(2.9)

N =




Dx1u
′
x ′

1
Dx2u

′
x ′

1
· · · Dxnu

′
x ′

1
Dtu

′
x ′

1

Dx1u
′
x ′

2
Dx2u

′
x ′

2
· · · Dxnu

′
x ′

2
Dtu

′
x ′

2· · · ·
· · · ·
· · · ·

Dx1u
′
x ′
n
Dx2u

′
x ′
n

· · · Dxnu
′
x ′
n
Dtu

′
x ′
n

Dx1u
′
t ′ Dx2u

′
t ′ · · · Dxnu

′
t ′ Dtu

′
t ′



. (2.10)

In this paper we introduce two special classes of point transformations, namely

x ′
i = Pi(xi), t ′ = Q(t) u′ = R(x1, x2, . . . , xn, t, u) i = 1, 2, . . . , n (2.11)

x ′
1 = P1(t) x ′

i = Pi(xi) t ′ = Q(x1)

u′ = R(x1, x2, . . . , xn, t, u) i = 2, 3, . . . , n.
(2.12)

We note that conditions (2.2) and (2.3) are satisfied if we assume that P1, P2, . . . , Pn,Q are
not constant functions and also that Ru �= 0. Employment of these point transformations
lead to simple forms for the derivatives of u′. For the point transformations (2.11) the first
derivatives of u′, given by equation (2.4), simplify to

u′
x ′
i
= P−1

ixi
(Rxi + Ruuxi ) i = 1, 2, . . . , n (2.13)

u′
t ′ = Q−1

t (Rt + Ruut ) (2.14)

and the second-order pure derivatives, given by equation (2.8), simplify to

u′
x ′
i x

′
i
= P−3

ixi
[PixiRuuxixi + PixiRuuu

2
xi

+ (2PixiRuxi − PixixiRu)uxi
+PixiRxixi − PixixiRxi ] i = 1, 2, . . . , n (2.15)

u′
t ′t ′ = Q−3

t [QtRuutt +QtRuuu
2
t + (2QtRut −QttRu)ut +QtRtt −QttRt ]. (2.16)

Similar results may be obtained when we use point transformations (2.12). For example,

u′
t ′ = Q−1

x1
(Rx1 + Ruux1) (2.17)

u′
t ′t ′ = Q−3

x1
[Qx1Ruux1x1 +Qx1Ruuu

2
x1

+ (2QtRux1 −Qx1x1Ru)ux1

+Qx1Rx1x1 −Qx1x1Rx1 ]. (2.18)
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In the subsequent analysis we search for point transformations of the forms (2.11)
and (2.12) for the three n-dimensional PDEs (1.1)–(1.3). For each of these PDEs we split
the analysis into two cases. In the first case the special class of point transformations (2.11) is
employed, while in the second we use (2.12).

3. Equation utt =
∑n

k=1[Fk(u)uxk
]xk

Case 1. We consider the point transformations (2.11) which relate the two PDEs

u′
t ′t ′ =

n∑
k=1

[Gk(u
′)u′

x ′
k
]x ′
k

(3.1)

utt =
n∑
k=1

[Fk(u)uxk ]xk (3.2)

where Fi are not all constant functions. In particular, these transformations will be symmetries
of equation (3.2) if Gi = Fi , for all i.

Using equations (2.13)–(2.16), PDE (3.1) becomes an identity of the form

E1(x, t, u, ux1 , . . . , uxn , ut , ux1x1 , . . . , uxnxn) = 0 (3.3)

where utt has been eliminated from equation (3.2). The function E1 is an explicit polynomial
in ux1 , . . . , uxn , ut , ux1x1 , . . . , uxnxn . We impose the condition that equation (3.3) is an identity
in the variables that E1 depends on which are regarded as independent. Thus, identity (3.3)
produces a set of determining equations corresponding to the coefficients of different terms in
ux1 , . . . , uxn , ut , ux1x1 , . . . , uxnxn . These equations enable the desired point transformations to
be derived and ultimately impose restrictions on the functional forms of P1, P2, . . . , Pn,Q

and R. Also restrictions are made on the forms of the functions Fi(u) and Gi(u′).
The coefficients of uxixi give

Gi(u
′) = P 2

ixi
Q−2
t Fi(u) i = 1, 2, . . . , n. (3.4)

These latter relations also make the coefficients of u2
xi

vanish. Now coefficients of u2
t and ut

give, respectively,Q−2
t Ruu = 0 andQ−3

t (2QtRut −QttRu) = 0. Hence,

R = A(x1, x2, . . . , xn)Q
1/2
t u + B(x1, x2, . . . , xn, t). (3.5)

Firstly, we assume that none of the functions Gi(u′) is constant. Differentiation of
equation (3.4) with i = 1 w.r.t. xj , j = 2, 3, . . . , n, and with i = 2 w.r.t. x1 give

Rx1 = Rx2 = · · · = Rxn = 0.

Therefore the form of R, given by equation (3.5), reduces to

R = cQ1/2
t u + B(t) (3.6)

where c is a constant.
Coefficients of uxi in equation (3.3) imply that the functions Pi(xi) are linear. That is,

Pi(xi) = αi1xi + αi2 i = 1, 2, . . . , n. (3.7)

The relations (3.4), (3.6) and (3.7) simplify equation (3.3) to
1
4Q

−7/2
t (2QtQttt − 3Q2

t t )cu +Q−3
t (QtBtt −QttBt ) = 0. (3.8)

The coefficient of u in (3.8) shows that (i)Q(t) = β1t + β2 or (ii)Q(t) = 1
β1t+β2

+ β3.
For case (i), using the fact thatQ is linear, then differentiation of equation (3.4), with i = 1,

with respect to t implies that B must be constant, say γ2, since G1 is not constant. Hence,
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equation (3.6) gives R = γ1u + γ2, where γ1 = c√β1. Therefore, we have the following point
transformation:

x ′
i = αi1xi + αi2 t ′ = β1t + β2 u′ = γ1u + γ2 i = 1, 2, . . . , n (3.9)

where

Fi(u) = β2
1α

−2
i1 Gi(γ1u + γ2) (3.10)

which transforms equation (3.1) to (3.2). We note that transformation (3.9) is valid for arbitrary
functions Fi(u). Such transformations are known as equivalence transformations. These
transformations may be filtered out of equations arising in the subsequent analysis, without
loss of generality, with the understanding that all transformations obtained for equation (3.2)
may be augmented by (3.9) and (3.10).

In case (ii),Q(t) = ε
t
, where ε = ±1, modulo (3.9). From equation (3.8), B = c1Q + c2.

Hence,B(t) = εc1
t

+c2. Equivalence transformation (3.9) implies that c1 = c2 = 0, c
√−ε = 1

(equation (3.6)) and αi1 = 1, αi2 = 0 (equation (3.7)), without loss of generality. That is, we
generate the point transformation

x ′
i = xi t ′ = ε

t
u′ = u

t
i = 1, 2, . . . , n. (3.11)

Transformation (3.11) forms a cyclic group of order two if ε = 1 and of order four if
ε = −1. Now equations (3.4) provide us with the forms of Fi(u) and Gi(u′). We
differentiate equations (3.4) with respect to u and t to give, respectively, Giu′ t−1 = t4Fiu
and −Giu′ut−2 = 4t3Fi . Eliminating Giu′ from these equations we obtain

u−1t5
(
u

dFi
du

+ 4Fi

)
= 0.

Hence, Fi(u) = u−4, where the constant of integration may be taken equal to 1 using (3.9).
Equations (3.4) give Gi(u′) = t4

u4 = u′−4. Therefore equation (3.11) is a discrete symmetry
of the nonlinear wave equation

utt =
n∑
k=1

[u−4uxk ]xk . (3.12)

Now we assume thatG1(u
′) is a non-constant function andGi(u′) = µi, i = 2, 3, . . . , n,

whereµi are constants. Since the functions Pi andQ do not depend on u, from equations (3.4)
we deduce that the functions Fi(u), i = 2, 3, . . . , n, must also be constants. Also, from
the same equations we conclude that Pi(xi), i = 2, 3, . . . , n and Q(t) are linear functions.
Therefore, Pi = xi, i = 2, 3, . . . , n,Q = t , modulo (3.9). Equations (3.4) give Fi(u) =
µi, i = 2, 3, . . . , n. Furthermore, differentiation of the first equation of equations (3.4) with
respect to x2, x3, . . . , xn, t give, respectively, Rx2 = Rx3 = · · · = Rxn = Rt = 0. Hence, the
form of R, given by equation (3.5), simplifies to

R = A(x1)u + B(x1). (3.13)

Using the forms of Pi,Q and R, the coefficient of ux1 in equation (3.3) give

P−1
1x1

(
−2Ax1P1x1u

dF1

du
− 2Bx1P1x1

dF1

du
+ (AP1x1x1 − 2Ax1P1x1)F1

)
= 0. (3.14)

From identity (3.14) we deduce that, either F1,
dF1
du and u dF1

du are linearly related with constant
coefficients or all three constant coefficients are zero. Thus, we have (i) P1(x1) = x1, A(x1)

andB(x1) being constants andF1(u) an arbitrary function, (ii)F1(u) = eu, or (iii)F1(u) = um,
where m is a constant. In all three subcases the linear transformations (3.9) have been used to
filter out arbitrary constants.
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Clearly, for subcase (i) we arrive at the equivalence transformations (3.9). Similarly,
without giving any derivations, we state that subcase (ii) yields no point transformations other
than those of equation (3.9).

In subcase (iii), where F1 = um, equation (3.14) gives B = constant, which may be taken
equal to zero because of the transformations (3.9), and A(x1) = c1P

1/(2(m+1))
x1 , where c1 is a

constant. Now, equation (3.3) implies that 2P1x1P1x1x1x1 − 3P 2
1x1x1

= 0. Since P1(x1) is not
linear, otherwise we are led to transformations (3.9), we have P1(x1) = ε

x1
, where ε = ±1.

The transformations (3.9) have also been used here to eliminate constants of integration in the
form of P1(x1). The first equation in equations (3.4) takes the form G1(u

′) = P 2
1x1
um. We

differentiate this equation with respect to x1 and u, respectively, and then we eliminate G1u′

from the two resulting expressions to give

c−1
1 P

(4m+3)/(2m+2)
1x1

um−1(−3m− 4) = 0.

Hence, m = − 4
3 . Therefore we have F1(u) = u−4/3, R = A(x1)u = c1P

−3/2
x1 u = x3

1u, where

the constant has been filtered out, and G1(u
′) = x−4

1 u
−4/3 = u′−4/3. Thus, we have produced

the discrete cyclic symmetry

x ′
1 = ε

x1
x ′
i = xi t ′ = t u′ = x3

1u i = 2, 3, . . . , n (3.15)

which leaves invariant the nonlinear PDE

utt = [u−4/3ux1 ]x1 +
n∑
k=2

µkuxkxk . (3.16)

We state, without giving any detailed derivations, that if more than one of the functions
Gi(u

′) are non-constants and the remaining are constants, then we are led to contradiction or
to the equivalence transformation (3.9).

Case 2. Here we consider point transformations of the form (2.12) which transform
equation (3.1) to (3.2). As in the previous case we substitute the forms of the derivatives
of the transformed variables into equation (3.1) to obtain an identity similar to (3.3):

E2(x, t, u, ux1 , . . . , uxn , ut , ux1x1 , . . . , uxnxn) = 0. (3.17)

Coefficients of ux1x1 and uxixi , (i = 2, 3, . . . , n) in (3.17) give, respectively,

G1(u
′) = P 2

1tQ
−2
x1

F1(u)
(3.18)

Gi(u
′) = −P

2
ixi
Q−2
x1
Fi(u)

F1(u)
i = 2, 3, . . . , n. (3.19)

Firstly, we assume that F1(u) is not a constant, which also implies that G1(u
′) is not

a constant. Differentiation of (3.18) with respect to xi, (i = 2, 3, . . . , n), respectively
and differentiation of any of the relations (3.19) with respect to t , leads to R = R(x1, u).
Furthermore, differentiation of (3.18) w.r.t. t and of (3.19) w.r.t. xi (i = 2, 3, . . . n) give that
P1(t), P2(x2), P3(x3), . . . , Pn(xn) are linear functions. That is, without loss of generality,
P1 = t and Pi = xi, (i = 2, 3, . . . , n).

Now coefficients of ux1 and u2
x1

in (3.17) give, respectively,

R(x1, u) = Q1/2
x1
φ(u) (3.20)

F1(u) = dφ

du
. (3.21)
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These results simplify (3.17) to
1
4Q

−7/2
x1

φ(2Qx1Qx1x1x1 − 3Q2
x1x1
) = 0.

Therefore we have either (i)Q(x1) = β1x1 + β2 or (ii)Q(x1) = 1
β1x1+β2

+ β3.
For case (i) we takeQ = x1. Using the forms of Pi(xi) which have been obtained earlier

and the relations (3.18) and (3.19) we deduce that the transformation

x ′
1 = t x ′

i = xi t ′ = x1 u′ = φ(u) i = 2, 3, . . . , n (3.22)

transforms

u′
t ′t ′ = [φ′(φ−1(u′))−1u′

x ′
1
]x ′

1
−

n∑
k=2

[φ′(φ−1(u′))−1Fk(φ
−1(u′))u′

x ′
k
]x ′
k

to

utt = [φ′(u)ux1 ]x1 +
n∑
k=2

[Fk(u)uxk ]xk

where φ and Fi are arbitrary functions. We note that (3.22) forms a cyclic group of order 2 if
the function φ(u) is equal to its inverse. We present special cases of the transformation (3.22)
by choosing specific forms of φ(u).

Example 1. The transformation

x ′
1 = t x ′

i = xi t ′ = x1 u′ = um i = 2, 3, . . . , n

transforms the PDE

u′
t ′t ′ = 1

m
[u′(1−m)/m

u′
x ′

1
]x ′

1
− 1

m

n∑
k=2

[u′(1−m)/m
Fk(u

′1/m)u′
x ′
k
]x ′
k

to the PDE

utt = m[um−1ux1 ]x1 +
n∑
k=2

[Fk(u)uxk ]xk .

Symmetry within this example occurs when m = −1 and Fk(u) = u−1. That is, the point
transformation

x ′
1 = t x ′

i = xi t ′ = x1 u′ = u−1 i = 2, 3, . . . , n

is a cyclic symmetry of order 2 for the PDE

utt = −[u−2ux1 ]x1 +
n∑
k=2

[u−1uxk ]xk .

Also in the following example the point transformation that occurs is a symmetry under a
certain condition.

Example 2. The transformation

x ′
1 = t x ′

i = xi t ′ = x1 u′ = −u + L i = 2, 3, . . . , n

is a symmetry of the PDE

utt = −ux1x1 +
n∑
k=2

[Fk(u)uxk ]xk

provided that the functions Fk(u) are odd and periodic with period L.
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Example 3. The transformation

x ′
1 = t x ′

i = xi t ′ = x1 u′ = ln u i = 2, 3, . . . , n

transforms the PDE

u′
t ′t ′ = [eu

′
u′
x ′

1
]x ′

1
−

n∑
k=2

[eu
′
Fk(e

u′
)u′
x ′
k
]x ′
k

to the PDE

utt = [u−1ux1 ]x1 +
n∑
k=2

[Fk(u)uxk ]xk .

One of the main applications of the point transformations is to map a solution of a PDE
to another solution of the same or different PDE. For example, we consider the solution
u(x1, x2, t) = t2(sin x2 + cex1)−2 of the PDE utt = (u−1ux1)x1 + (u−1ux2)x2 [1, p 234]. Then
employing the point transformation given in example 3, with n = 2 and F2(u) = u−1, we
obtain the solution u′(x ′

1, x
′
2, t

′) = ln[x ′2
1(sin x ′

2 + cet
′
)2] of the PDE u′

t ′t ′ = [eu
′
u′
x ′

1
]x ′

1
− u′

x ′
2x

′
2
.

For case (ii) we takeQ = ε
x1

. Now we multiply the relation (3.18) w.r.t. u and x1 to obtain,

respectively, G1u′Q
1/2
x1 φu = −Q−2

x1
φuuφ

−2
u and 1

2G1u′Q
−1/2
x1 Qx1x1φ = −2Q−3

x1
Qx1x1φ

−1
u .

Elimination of G1u′ from these two equations give

φφuu − 4φ2
u = 0. (3.23)

Hence, φ = (λ1u + λ2)
−1/3. We take φ(u) = −3u−1/3 and from (3.20) we get R =

−3x−1
1 u

−1/3. Also equation (3.18) gives G1(u
′) = x4

1u
4/3 = u′−4. We differentiate

equations (3.19) w.r.t. u and xi (i = 2, 3, . . . , n), respectively and then we eliminate Giu′

from each of the corresponding pair of the resulting equations, to get

Q−5/2
x1

φ−1φ−3
u [−φφuFiu + (φφuu − 4φ2

u)Fi] = 0.

Clearly, equation (3.23) implies Fiu = 0. Hence, Fi(u) = µi, (i = 2, 3, . . . , n) and
from (3.19) we have Gi(u′) = µix4

1u
4/3 = µiu′−4. Without loss of generality, µi = 1.

Therefore, collecting all these results, we deduce that the transformation

x ′
1 = t x ′

i = xi t ′ = εx−1
1 u′ = −3x−1

1 u
−1/3

transforms

u′
t ′t ′ =

n∑
k=1

[u′−4
u′
x ′
k
]x ′
k

to

utt = [u−4/3ux1 ]x1 +
n∑
k=2

uxkxk .

Finally, we turn to the case where F1(u) = µ1, where µ1 is a constant. From (3.18) we
have P1 = t,Q = x1 and G1(u

′) = 1
µ1

. Furthermore, equations (3.19) produce the results

Pi = xi, Fi(u) = µi and Gi(u′) = − µi
µ1

, where i = 2, 3, . . . , n − 1. Coefficients of u2
xn

in (3.17) and equation (3.19) with i = n give R = P
2/m
nxn u and Fn(u) = um. These results

simplify the identity (3.17) to (ignoring nonzero factors)

(2mPnxnPnxnxnxn + 4P 2
nxnxn

)u +mPnxnPnxnxn(3m + 4)uxn = 0.

The function Pn(xn) must not be linear, otherwise we obtain a special case of the
transformation (3.22). In this latter equation, the coefficients of u and uxn must vanish. Hence,
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m = − 4
3 and, without loss of generality, Pn = ε

xn
. Therefore Fn(u) = u−4/3, R(xn, u) = x3

nu

and from (3.19), with i = n, we get Gn(u′) = − 1
µ1
u′−4/3.

We collect these results and we choose µ1 = −1 so that the transformation

x ′
1 = t x ′

i = xi x ′
n = ε

xn
t ′ = x1 u′ = x3

nu i = 2, 3, . . . , n− 1

is a cyclic symmetry, of order 2 if ε = 1 and of order 4 if ε = −1, of the wave equation

utt = −ux1x1 +
n−1∑
k=2

µkuxkxk + [u−4/3uxn ]xn .

4. Equation utt =
∑n

k=1Fk(uxk
)uxkxk

We consider point transformations of the form (2.11) and (2.12) which relate the n-dimensional
PDEs

u′
t ′t ′ =

n∑
k=1

Gk(u
′
x ′
k
)u′
x ′
kx

′
k

(4.1)

utt =
n∑
k=1

Fk(uxk )uxkxk . (4.2)

Unlike the previous section, here we present the results without giving the detailed derivations.
It turns out that no point transformations of the form (2.12) exist that transform (4.1) to (4.2).

The equivalence transformation that connects (4.1) and (4.2) is

x ′
i = αi1xi + αi2 t ′ = β1t + β2

u′ = γ u +
n∑
k=1

γkxk + γn+1t + δ i = 1, 2, . . . , n
(4.3)

where the relation between the functions Fi(uxi ) and Gi(u′
x ′
i
) is given by

Fi(ux) = α−2
i1 β

2
1Gi(α

−1
i1 (γ ux + γi)). (4.4)

Two examples of discrete symmetries are reported for equation (4.2). The transformation

x ′
i = xi t ′ = ε

t
u′ = u

t
i = 1, 2, . . . , n (4.5)

is a cyclic symmetry (of order 2 if ε = 1 and of order 4 if ε = −1) of the nonlinear equation

utt =
n∑
k=1

u−4
xk
uxkxk .

The second example is the transformation

x ′
i = xi t ′ = t u′ = u + φ(xm, xm+1, . . . , xn)

2 � m � n i = 1, 2, . . . , n

which is a symmetry of the PDE

utt =
m−1∑
k=1

Fk(uxk )uxkxk +
n∑
k=m

µkuxkxk

where Fk(uxk ) are arbitrary functions and φ(xm, xm+1, . . . , xn) satisfy the linear PDE

φtt =
n∑
k=m

µkφxkxk .
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5. Equation utt =
∑n

k=1Fk(uxkxk
)

Similarly, as in the previous section, without presenting any derivations we present the point
transformations of the form (2.11) and (2.12) that map the equation

u′
t ′t ′ =

n∑
k=1

Gk(u
′
x ′
kx

′
k
) (5.1)

into the equation

utt =
n∑
k=1

Fk(uxkxk ). (5.2)

The equivalence transformation is

x ′
i = αi1xi + αi2 t ′ = β1t + β2 i = 1, 2, . . . , n

u′ = γ u +
n∑
i=1

n∑
j=i
γij xixj +

n∑
i=1

γin+1xit + γn+1n+1t
2 +

n∑
i=1

γixi + γn+1t + δ (5.3)

where the relation between the functions Fk(uxkxk ) and Gk(u′
x ′
kx

′
k
) is given by

F1(ux1x1) = γ−1β2
1G1(α

−2
11 (γ ux1x1 + 2γ11))− 2γn+1n+1γ

−1

Fi(uxixi ) = γ−1β2
1Gi(α

−2
i1 (γ uxixi + 2γii)) i = 2, 3, . . . , n.

(5.4)

Two additional transformations of the form (2.11) exist. The transformation

x ′
i = xi t ′ = ε

t
u′ = u

t
i = 1, 2, . . . , n (5.5)

is a symmetry of the PDE

utt =
n∑
k=1

(uxkxk )
−3

and the transformation

x ′
1 = ε

x1
x ′
i = xi t ′ = t u′ = u

x1
i = 2, 3, . . . , n (5.6)

is a symmetry of the PDE

utt = (ux1x1)
−1/3 +

n∑
k=2

uxkxk .

Both symmetries (5.5) and (5.6) form cyclic groups of order 2 if ε = 1 and of order 4 if
ε = −1.

Employment of the point transformations (2.12) that relate equations (5.1) and (5.2) lead
us to only one result, which is the trivial transformation

x ′
1 = t x ′

i = xi t ′ = x1 u′ = u i = 2, 3, . . . , n (5.7)

that maps the PDE

u′
t ′t ′ = u′

x ′
1x

′
1

+
n∑
k=2

Fk(u
′
x ′
kx

′
k
)

to the PDE

utt = ux1x1 −
n∑
k=2

Fk(uxkxk )

where the functions Fk are arbitrary.
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6. Remarks

Point transformations of a restricted class have been introduced here. A complete classification
of such transformations admitted by specificn-dimensional nonlinear equations is presented. It
should pointed out that transformations of more general classes admitted by the same equations
exist. For example, the transformation

x ′
1 =

√
2x1 + x2 x ′

2 = x1 +
√

2x2 x ′
i = xi

t ′ = t u′ = u i = 3, 4, . . . , n

is a point symmetry of the PDE

utt = [F1(u)ux1 ]x1 − [F1(u)ux2 ]x2 +
n∑
k=3

[Fk(u)uxk ]xk

where the functions Fi(u) are arbitrary. A second example is the point transformation

x ′
1 = x1 + 2x2 +

2√
3
x3 x ′

2 = 2x1 + x2 +
2√
3
x3

x ′
3 = 2√

3
x1 +

2√
3
x2 + x3 t ′ = t u′ = u

which maps the three-dimensional wave equation

u′
t ′t ′ = [F(u′)u′

x ′
1
]x ′

1
+ [F(u′)u′

x ′
2
]x ′

2
− 1

3 [F(u′)u′
x ′

3
]x ′

3

in the equation

utt = [F(u)ux1 ]x1 + [F(u)ux2 ]x2 − 3[F(u)ux3 ]x3 .

Nevertheless the problem of determining the complete set of transformations of the class (2.1)
for equations (1.1)–(1.3) is a very difficult task.

Although a restricted class of point transformations was considered in this paper, the
analysis goes beyond Lie group analysis. In addition to Lie symmetries, we have obtained
equivalence transformations, discrete symmetries and transformations relating different
equations but of the same class. This shows that there is merit in studying point transformations
directly in finite form with the ultimate dual goal of finding the complete set of point symmetries
of PDEs and discovering new links between different equations, even though this analysis is
more difficult than searching for Lie infinitesimal groups of transformations.

We point out that all the point transformations derived in this paper map a linear PDE
to a linear PDE or a nonlinear PDE to a nonlinear PDE. This is also the case for the one-
dimensional equations of (1.1)–(1.3) [8]. Furthermore, for a general class of PDEs utt = H ,
where H is a function of x, t, u and derivatives of u w.r.t. x, it can be shown [9] that no point
transformation exists to map a nonlinear PDE of this class to a linear PDE of the same class and
vice versa. It appears that this also applies to the n-dimensional equations (1.1)–(1.3). Non-
local transformations that connect an n-dimensional linear and a nonlinear PDE may exist. For
example, in the one-dimensional case, it is known that the Legendre (contact) transformation

x ′ = ut t ′ = ux u′ = tut + xux − u (6.1)

relates the linear wave equation

u′
t ′t ′ = F(t ′)u′

x ′x ′

and the nonlinear wave equation

utt = F(ux)uxx
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provided that uttuxx − u2
xt �= 0. Transformation (6.1) forms a cyclic group of order 2

(u′
x ′ = t, u′

t ′ = x). For further study, such transformations may be considered for higher-
dimensional equations.

The consideration of n-dimensional equations makes the paper have mathematical
significance rather than physical. However, the results for the one-, two- and three-dimensional
equations are special cases of the results that we have obtained. These nonlinear wave equations
are well known for their physical applications. See, e.g., [1,2] and the references therein. The
results for the one-dimensional equations have been presented in [3–5, 8], while for the two-
and three-dimensional equations, only the Lie analysis has been carried out [1]. The rest of the
point transformations, which can be obtained as special cases of the n-dimensional equations,
are new.
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